Summary of Load Test Results

Suncore ETF Temporary Cooler Pipe Support,

Fort McMurray, AB Canada

American Piledriving Equipment

March 2014

1100 112th Ave. NE, Suite 500 Bellevue, WA 98004

Project	Suncor ETF Temporary Cooler Pipe Support	
Location	Approx. 30 km north of Fort McMurray, AB Canada	
Pile Designer	CH2M HILL	
Geotechnical Explorations	Amec 2007, Thurber 2014	
Installation Contractor	Aecon	
Date	December, 2014	

Subsurface summary:

very stiff clay shale fill and till over hard clay shale (Clearwater Formation) (Boring TH14-3 located ~20 feet north)

Pile Parameters

Shaft O.D.	inch	12.0
Wall thickness	inch	0.582
Helix diameter	inch	28
Helix thickness	inch	1.0
Steel yield strength	ksi	110
Number of helixes		1
Distance between helix	feet	NA

Installation Equipment

APE HD200 Helical Driver	
Caterpillar 374D L Excavator	

Installation Parameters

Pile tip depth	feet	20
Torque at final depth	kip-feet	90
Average torque, full depth	kip-feet	39
Average torque, bottom 5 ft	kip-feet	50

Measured Pile Resistance

Ultimate Resistance from static load		
test in uplift	kips	140

Estimates of Resistance

Soil mechanics based (Tappenden and		
Sego, 2007, cohesive)	kips	130
Empirical based on average torque		
(Sakr, 2013)	kips	80
Empirical based on average torque in		
bottom 5' (Sakr, 2013)	kips	100
Empirical based on end of driving		
torque (Perko, 2009)	kips	200

References

Perko, H.A., 2009. Helical Piles: A Practical Guide to Design and Installation. John Wiley & Sons. New York, N.Y.

Sakr, M., 2013. Relationship between Installation Torque and Axial Capacities of Helical Piles in Cohesive Soils. Deep Foundations Institute Journal Vol. 7, No. 1 August. pp 44-58.

Tappenden, K.M. and D.C. Sego, 2007. Predicting the Axial Capacity of Screw Piles Installed in Canadian Soils. In Proceedings: OttowaGeo2007